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A robotic rover vehicle designed for use in the exploration of the Lunar
surface is described. The Robotic All-Terrain Lunar Exploration Rover

(R.A.T.L.E.R.) is a four wheeled all-wheel-drive dual-body vehicle. A
uniquely simple method of chassis articulation is employed which allows
all four wheels to remain in contact with the ground, even while

climbing over step-like obstacles as large as 1.3 wheel diameters. Skid

steering and modular construction are used to produce a simple, rugged,

highly agile mobility chassis with a reduction in the number of parts

required when compared to current designs being considered for planetary

exploration missions. The design configuration, mobility parameters, and

performance of several existing R.A.T.L.E.R. prototypes are discussed.

INTRODUCTION

In 1989 President George Bush called for the establishment of a U.S.

Space Exploration Initiative with the goals of returning to the Moon to

stay and a manned m_ssion to Mars. Subsequent national studies such as
NASA's 90-Day Study I and the Synthesis Report 2 have led to significant

renewed interest in robotic precursor missions for exploration of the

Moon. The recent Lunar Rover/Mobility Systems Workshop s, conducted by

NASA's Exploration Program Office and the Lunar Planetary Institute,

proposed two initial missions and established some criteria for Lunar

rover platforms.

For Lunar exploration missions lasting one Lunar day or longer, a
robotic rover system must combine high agility and efficient thermal

management with radiation hardness to assure a high probability of
mission success in that extreme operating environment. Low launch mass,

high reliability, and robustness of the system are highly desirable
characteristics as well, since the vehicle will not be readily

accessible for repair or recovery once it has been deployed. Engineers
at Sandia National Laboratory have recently demonstrated an innovative

concept for a robotic rover vehicle designed for use in the exploration
of the Lunar surface. The design configuration, mobility parameters, and

performance of several prototypes of this vehicle are discussed below.
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VEHICLE DESCRIPTION 

The Robotic All-Terrain Lunar Exploration Rover (R.A.T.L.E.R.) is a four 
wheeled a1 1-wheel-drive platform with twin body compartments connected by a 
hollow central pivot. The general configuration is shown in Figure 1, which is 
a three-view schematic of the dual-body central-pivot design for which a 
patent has been applied. L-J -1 . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  
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Figure 1. R.A.T.L.E.R. Schematic. 

The uniquely simple method of chassis articulation by means of the hollow 
6 central pivot is employed between the bodies to allow all four wheels to 

remain in contact with the ground while. traversing uneven terrain. This 
central pivot, as well as the vehicle center of mass, i s  located as close to 
the axle line and the geometric center of the vehicle as possible to ensure 
maximum stability while climbing over large obstacles. The articulating action 
of the dual-body central-pivot is illustrated in Figure 2, which is a picture 
of the first remotely controlled prototype being driven over some large rocks 
in Death Valley. 

Figure 2. R.A.T.L.E.R. Prototype at Death Valley. 
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ANALYSIS

Only four situations have been analyzed to date for the R.A.T.L.E.R.:

I) the maximum height vertical step which can be cleared, 2) the optimum
wheelbase for a given wheel diameter, 3) an estimate of the optimum stance,

and 4) the traction advantage of the dual-body central-pivot design over a
conventional four wheeled platform.

Figure 3 shows a schematic of the maximum step height problem. From the

geometry, the maximum step height H which can be climbed is

I) Hma x = -V/B 2 _ R2

where B is the wheelbase and R is the wheel radius. The ground clearance is

assumed to equal to the wheel radius, and the center of mass is assumed to be

centered along the line of axles so that the vehicle will not tip over

backwards.

8 i

..............i, ...............

Figure 3. Maximum step clearance geometry.

Constructing a figure similar to Figure 3 but without the rear wheel

touching the vertical face of the step, it can be shown that for any angle B

there is a minimum height

2) Hmi n = R(l+tanB)

such that the vehicle bottom will scrape on all steps with height H if

3) Hmi n < H < Hma x

In terms of the geometry

4) H = BsinB
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and therefore no scraping will occur as long as

s) BsinB < R(l+tan8)

The bottom will just touch the point of the step if the inequality in Equation

(5) is instead an equality. Assuming the equality and differentiating with

respect to B, it can be shown that a minimum occurs when

6) sinB = cose

The optimum value of B for no bottom scraping is then

7) B =21/2 R

Using the above result in Equation (I), the maximum step height that a vehicle

with optimized wheelbase can climb is

8) Hmax = ¢7 R

which is 1.32 wheel diameters. A similar analysis using Equation (8), assuming

hemispherical boulders, and neglecting wheel width, shows that the optimum

stance S must be in the range

9) S < 3.74 R

A much more complicated analysis of the step problem, which will not be
repeated here, shows that when only one side of the vehicle climbs a step, the

leverage advantage of the articulating R.A.T.L.E.R. design requires only half

as much torque to climb the step as a conventional four wheeled platform. This

is intuitively obvious since only "half" of the R.A.T.L.E.R. vehicle is

traversing the obstacle. Alternatively, if the two vehicles have equal torque,
the R.A.T.L.E.R. design can climb steps which are slicker by almost a factor

of two (the coefficient of friction equations are not linear).
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PROTOTYPES /_D TESTS

The original prototype was a small, unpowered, uncontrolled balsa model

about six inches long which was used to verify that the dual-body central-

pivot concept would traverse large obstacles and had some advantages over
conventional platforms. Several other models were then constructed to

investigate conventional steering versus skid steering, body shapes, tethered
controls, remote RF controls, and even solar power use.

The first large scale prototype, incorporating the best ideas from all of

the early models, is the one shown in Figure 2 which has been dubbed the

"White R.A.T.L.E.R.". This model is about 15 inches long with a balsa, mylar,

and plastic tubing chassis. The drive system consists of four 7/8ths inch dia

by 3 inches long constant speed DC electric motors reclaimed from the DOE

weapons program. Skid steering is used. The control system is a model aircraft

radio control set coupled to microswitches for motor control and standard

servo setups for the internal tilt of the miniature CCD onboard camera. The

entire system, including the remote video transmitter, is powered by a series

of 9V transistor radio batteries. This prototype has been tested extensively

for obstacle climbing abilities, and once in the sands at Death Valley.

Three subsequent prototypes, all using skid steering, have been

constructed and are now undergoing extensive testing at Sandia and on the

dunes at White Sands National Monument (WSNM). One is an eleven pound aluminum

replica of the White R.A.T.L.E.R. powered by a series of 12V gelcells, and
with an external pan and tilt miniature CCD camera. The second unit is an 8

inch Pygmy R.A.T.L.E.R. with external pan and tilt CCD camera, miniature video

transmitter, and variable speed drive system for the wheels. The last unit is

a flat plate body testbed with variable speed drive system, designed so that

the stance, ground clearance, pivot height, and pivot limits can be easily

changed. All three systems have been tested in damp gypsum sand at WSNM and

can climb 18-22 degree slopes. A dry, powdery sand test with the Pygmy

R.A.T.L.E.R. showed the potential for climbing even steeper slopes, but

further tests are needed to verify this observation.
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